
Chapter 5: Bound States 

In the previous chapter, we saw how the plane wave was a solution to the free-particle Schrödinger 

equation 

−
ℏ2

2𝑚

∂2Ψ(𝑥, 𝑡)

∂𝑥2
= 𝑖ℏ

∂Ψ(𝑥, 𝑡)

∂𝑡
 

 

And we concluded that the Schrödinger equation, without considering external interactions, is an 

accounting of energy. It basically tells us that the energy of the particle is equal (only) to its kinetic 

energy 

𝑝2

2𝑚
 = 𝐸 

KE = 𝐸  

Now, we account for those external interactions by modifying the Schrödinger equation. But how? 

Just add potential energy 𝑈(𝑥)! 

 −
ħ2

2𝑚

∂2Ψ(𝑥, 𝑡)

∂𝑥2
+ 𝑈(𝑥)Ψ(𝑥, 𝑡) = 𝑖ħ

∂Ψ(𝑥, 𝑡)

∂𝑡
 

 
(5-2) 

Note: the potential energy here implies an interaction via conservative forces only, such as the 

electrostatic force. Other (nonconservative) forces would change the total energy and we wouldn’t 

be able to write an expression for potential energy. 

 

5.2 stationary states 

To solve (5-2), we use separation of variables to break up the differential equation. We assume that 

the wave function can be represented as a product of two wave functions: a spatial part 𝝍(𝒙) and a 

temporal part 𝝓(𝒕) 

 Ψ(𝑥, 𝑡) = 𝜓(𝑥)𝜙(𝑡) (5-3) 

Inserting this equation into (5-2), we have 

−
ℏ2

2𝑚

𝜕2

𝜕𝑥2
 [𝜓(𝑥)𝜙(𝑡)] + 𝑈(𝑥)[𝜓(𝑥)𝜙(𝑡)] = 𝑖ℏ

𝜕

𝜕𝑡
 [𝜓(𝑥)𝜙(𝑡)] 

−
ℏ2

2𝑚
𝜙(𝑡)

∂2

∂𝑥2
 [𝜓(𝑥)] + 𝑈(𝑥)𝜓(𝑥)𝜙(𝑡) = 𝑖ℏ𝜓(𝑥)

∂

∂𝑡
[𝜙(𝑡)] 

And diving both sides by 𝜓(𝑥)𝜙(𝑡), 

−
ℏ2

2𝑚

1

𝜓(𝑥)
∙  

𝜕2𝜓(𝑥)

𝜕𝑥2
 + 𝑈(𝑥) = 𝑖ℏ

1

𝜙(𝑡)
∙

𝜕𝜙(𝑡)

𝜕𝑡
 



which leads to the conclusion that both sides must be constant. Thus, we have two separate 

differential equations linked together by a single constant C 

−
ℏ2

2𝑚

1

𝜓(𝑥)
∙  

𝜕2𝜓(𝑥)

𝜕𝑥2
 + 𝑈(𝑥) = 𝑖ℏ

1

𝜙(𝑡)
∙

𝜕𝜙(𝑡)

𝜕𝑡
= 𝐶 

(5-5) 

Next, we must find the solutions 𝜓(𝑥) and 𝜙(𝑡).  

 

The temporal part. When we solve for the temporal part, we end up with a complex exponential 

solution. After applying Euler’s identity to that complex exponential, we find that the constant C is 

energy E, leaving us with 

 
𝜙(𝑡) = 𝑒

−𝑖 
𝐸
ℏ

𝑡
 

 

If you plug this temporal part into (5-3), and calculate the probability density, the complex 

exponential goes away – thus, the time dependence disappears.  

 

The spatial part. After replacing C with energy E in (5-5) and multiplying both sides by 𝜓(𝑥), we 

obtain the time-independent Schrödinger equation 

−
ℏ2

2𝑚

𝑑2𝜓(𝑥)

𝑑𝑥2
 + 𝑈(𝑥)𝜓(𝑥) = 𝐸𝜓(𝑥) (5-10) 

Note that (5-10) has unique spatial solutions 𝜓(𝑥) for each case of 𝑈(𝑥), but the temporal part is 

always the same, so we ignore it for the rest of the chapter. 

 

5.3 Physical Conditions: Well-behaved Functions 

Mathematically, the Schrödinger equation (5-10) could have arbitrarily many solutions if energy E is 

treated as an arbitrary parameter. However, there are physical constraints that lead to E being only 

allowed certain discrete values: 𝐸1, 𝐸2, 𝐸3, etc... And for each of those energies, there is a 

corresponding wave function: 𝜓1, 𝜓2, 𝜓3, etc... In this section, we look at some of those conditions. 

 

Normalization. The probability of finding a particle in all space must be 1 since the particle must be 

located somewhere in the universe. Thus, we should be able to integrate the probability density 

function to have 

 ∫ |Ψ(𝑥, 𝑡)|2𝑑𝑥 = 1
∞

−∞

 (5-11) 

 

Smoothness. To be physically acceptable, a wave function must be “smooth,” and there are two 

aspects to smoothness 

1. Continuity of 𝜓(𝑥) 

2. Continuity of 
𝑑𝜓(𝑥)

𝑑𝑥
 

  



By continuity of 𝜓(𝑥), we mean there should be no abrupt changes in the wave function as those 

would imply instances of infinite kinetic energy 

 

Continuity in 
𝑑𝜓(𝑥)

𝑑𝑥
 means that the second derivative—and thus the kinetic energy—will be finite, 

which must be the case if 𝑈(𝑥) and 𝐸 are finite. There is one exception to this rule though; if we allow 

𝑈(𝑥) to be infinite as in the case of the infinite well, then 
𝑑𝜓(𝑥)

𝑑𝑥
 is allowed to be discontinuous. 

 

5.4 Bound States 

A bound state results when a particle is caught between two turning points -A and +A, where the 

potential energy rises to meet the total energy E. The region outside these turning points is known 

as the “forbidden region” as getting there would require a change in energy – an impossibility if 

energy is conserved. 

 
Classical bound states are found in systems such as the mass on a spring. In such cases, we are 

concerned with position of a particle in time. In Quantum bound states we are concerned with Ψ(𝑥, 𝑡). 

We consider three simple cases: the infinite well, the finite well, and the simple harmonic oscillator. 

  



5.5 Case 1: The Infinite Well 

The infinite well is a one-dimensional box of width L and “walls” made of infinitely high potential 

energy at either end, keeping a particle trapped within. Constraining a particle to such a box allows 

us to obtain the simplest possible solution to (5-10). The infinite well has the following definition 

𝑈(𝑥) = {
0 0 < 𝑥 < 𝐿
∞ 𝑥 < 0, 𝑥 > 𝐿

 

 

 
Potential energy is 0 inside the well, so the time-independent Schrödinger equation simplifies to 

 
𝑑2𝜓(𝑥)

𝑑𝑥2
= −𝑘2𝜓(𝑥) 

 
(5-12) 

 where  𝑘 = √
2𝑚𝐸

ℏ2   

 

Equation (5-12) has only one acceptable solution due to one of the physical constraints of the wall 

discussed earlier. These constraints also lead to the conclusion that energy E, and thus the wave 

function, is quantized by an integer n 

 

Ψ𝑛(𝑥) = {√2/L ⋅ sin (
𝑛𝜋𝑥

𝐿
) 0 < 𝑥 < 𝐿        𝐸𝑛 =

𝑛2𝜋2ℏ2

2𝑚𝐿2

0 𝑥 < 0, 𝑥 > 𝐿

 

 

(5-16) 

The reason for the quantization by n is related to the fact that sine will only be zero at the righthand 

wall if its argument is a multiple of 𝜋. 

  



5.6 Case 2: The Finite Well 

The finite well is similar to the infinite well, but the walls jump to a finite value 𝑈0 rather than infinity. 

The finite well has the following definition 

𝑈(𝑥) = {
0 0 < 𝑥 < 𝐿

𝑈0 𝑥 < 0, 𝑥 > 𝐿
 

 
And for simplicity, we consider only the case where a particle has less energy than the height of the 

walls (i.e., when 𝐸 < 𝑈0). For the case when 𝐸 > 𝑈0, the particle would be able to escape the well.  

 

The time-independent Schrödinger equation inside the finite well is 

 
𝑑2𝜓(𝑥)

𝑑𝑥2
=

2𝑚(𝑈(𝑥) − 𝐸)

ℏ2
𝜓(𝑥) 

 
(5-18) 

Finding solutions to the Schrödinger equation is much more complicated than it was for the infinite 

well. Now, 𝜓(𝑥) and its second derivative are still proportional by a constant, but the sign of the 

constant changes depending on the value of 𝑈(𝑥). Consider the two cases  

1. when 𝑈 = 0 inside the walls 

 𝑈 − 𝐸 is negative 

2. when 𝑈 > 𝐸 outside the walls 

 𝑈 − 𝐸 is positive 

Skipping all of the complicated derivations, we have three wave functions for the finite well 

 
𝜓(𝑥) = {

𝐶𝑒+𝛼𝑥 𝑥 < 0
𝐴 sin(𝑘𝑥) + 𝐵 cos(𝑘𝑥) 0 < 𝑥 < 𝐿

𝐺𝑒−𝛼𝑥 𝑥 > 𝐿

 

 

(5-21) 

 where 𝑘 ≡ √
2𝑚𝐸

ℏ2     and    𝛼 ≡ √
2𝑚(𝑈0−𝐸)

ℏ2   

 

One of the key differences between the finite and infinite well is the wave function's penetration into 

the classically forbidden region. Recall that for the infinite well, we said that 𝜓(𝑥) = 0 outside the 

walls, but for the finite well, 𝜓(𝑥) is nonzero because it is a decaying exponential. 



 

The wave function penetration depth into the forbidden region is given by 

 𝛿 =
1

𝛼
=

ℏ

√2𝑚(𝑈0 − 𝐸)
 (5-24) 

 

5.7 The Simple Harmonic Oscillator 

The harmonic oscillator is the most realistic of the three contrived bound states discussed in this 

chapter. The potential energy is now described by a smooth parabola 

𝑈(𝑥) =
1

2
𝜅𝑥2 

Inserting the potential energy definition into (5-10), we obtain the time-independent Schrödinger 

equation 

 −
ℏ2

2𝑚

𝑑2𝜓(𝑥)

𝑑𝑥2
+

1

2
𝜅𝑥2𝜓(𝑥) = 𝐸𝜓(𝑥) (5-25) 

The solutions are too complicated to derive, but one possible solution is for the classical mass on a 

spring 

𝜓(𝑥) = 𝐴𝑒− √
𝑚𝜅
2ℏ

𝑥2

 

 

The rigorous solution to (5-25) leads to the following allowed energies in the harmonic oscillator 

 𝐸 = (𝑛 +
1

2
) ℏ𝜔0 𝑛 = 0,1,2,3, … (5-26) 

 where 𝜔0 ≡ √
𝜅

𝑚
   

 

5.8 Expectation Values 

Expectation values are like averages. If we do the same experiment many times to measure the value 

of x, the expectation value is the average of all those measurements. Note that the expectation value 

is not the most probable value of a measurement. In fact, the expectation value may have zero 

probability of occurring. 

 

For position, the expectation value is  

𝑥̅ ≡ ∫  
all space 

𝑥|𝜓(𝑥)|2𝑑𝑥 

 

  



In general, we can use the symbol 𝑄 for any observable quantity, and the expectation value of that 

quantity will be 

𝑄̅ = ∫  
all space 

Ψ∗(𝑥, 𝑡)𝑄̂Ψ(𝑥, 𝑡)𝑑𝑥 

where 𝑄̂ is the operator associated with quantity 𝑄. There are unique operators for every observable. 

For position, 𝑄̂ = 𝑥, but sometimes 𝑄̂ is a differential operator. Table 1 gives the basic operators. 

 

Observable Momentum Position Energy 

Operator 𝑝̂ = −𝑖ℏ
∂

∂𝑥
 𝑥̂ = 𝑥 𝐸̂ = 𝑖ℏ

∂

∂𝑡
 

Table 1. Basic operators 

 

Using operators, we can rewrite the Schrödinger equation in a form that more clearly illustrates its 

foundation in energy 

KÊΨ(𝑥, 𝑡) + 𝑈̂(𝑥)Ψ(𝑥, 𝑡) = 𝐸̂Ψ(𝑥, 𝑡) 

 

 


