
Chapter 4: Matter waves 

Matter waves 

Previous chapter: We saw ways in which light has a particle-like nature. Now let’s see how particles 

can have a wave-like nature. 

4.2 Properties of Matter Waves 

Waves are described by their wavelength, frequency, and amplitude as a function of position and 

time. 

 

Wave functions  are solutions to wave equations. They give the amplitude of a wave as a function of 

position (x) and time (t). For example 

• 𝐵(𝑥, 𝑡) – Magnetic field wave function 

• 𝐸(𝑥, 𝑡) – Electric field wave function 

 

 

1.  Wavelength 

The wavelength of a matter wave (AKA the de Broglie wavelength) is  

 𝜆 = ℎ/𝑝  

This relationship indicates that a stationary object (𝑣 = 0 m/s) would cause the wavelength to 

approach infinity; just one of the reasons that an object cannot be truly stationary. 

 

2.  Frequency 

The frequency of a matter wave is related to its energy 

 𝑓 = 𝐸/ℎ   

It is often more convenient to express frequency and wavelength using angular frequency and wave 

number, respectively 

𝜔 =
2𝜋

𝑇
= 2𝜋𝑓 

 
𝑘 = 2𝜋/𝜆  

The wave number 𝑘 is considered a spatial frequency since it has units of m−1 due to the 1/𝜆. 

 

Example: what is the spatial frequency of a wave with 𝜆 = 1 m? 

 

Solution: the spatial frequency is 𝑘 = 2𝜋 rads/m 

 



Another convenient definition is the reduced Planck constant 

ℏ =
ℎ

2𝜋
= 1.055 × 10−34 J ⋅ s 

With these definitions, we express the fundamental wave-particle relationships as 

𝑝 =
ℎ

𝜆
= ℏ𝑘 

𝐸 = ℎ𝑓 = ℏ𝜔 

3.  Velocity 

It doesn’t make much sense to look at wave velocity for a matter wave. We have a formula describing 

the wave speed, but this is not equal to the particle speed 

 𝑣𝑤𝑎𝑣𝑒 = 𝑓𝜆 = 𝐸/𝑝  

 

Schrodinger Equation 

The wave equation for a matter wave is the Schrodinger equation, which describes the energy and 

momentum of a particle in time. There are two versions of interest: (1) the time-dependent equation 

and (2) the time-independent equation. The following notation is used to distinguish between the 

two 

 

𝛹(𝑥, 𝑡) − time-dependent  

𝜓(𝑥) − time-independent 

 

Free-particle Schrödinger equation  

A form of the Schrödinger equation that describes a matter wave in the absence of external forces. 

Note that it contains imaginary number 𝑖. This does not mean that the matter wave isn’t real. Matter 

waves simply can’t be represented by a single real function in the same way as an electromagnetic 

wave. Thus, the complex number representation helps us combine two equations in one. 

 

−
ħ2

2𝑚

∂2Ψ(𝑥, 𝑡)

∂𝑥2
= 𝑖ħ

∂Ψ(𝑥, 𝑡)

∂𝑡
 

Probability Density 

The probability of detecting a particle is proportional to the square of the wave’s amplitude. Since 

matter waves are represented by complex functions Ψ(𝑥, 𝑡), we find the probability density by 

multiplying Ψ(𝑥, 𝑡) by its complex conjugate Ψ∗(𝑥, 𝑡) 

 

 
[Re Ψ(𝑥, 𝑡)]2 + [lm Ψ(𝑥, 𝑡)]2 = Ψ∗(𝑥, 𝑡)Ψ(𝑥, 𝑡) = |Ψ(𝑥, 𝑡)|2 

 
 

 probability density = |Ψ(𝑥, 𝑡)|2  



The Plane Wave 

For analysis, we consider the simplest possible solution to the Schrödinger equation. The plane wave 

solution is the complex exponential 

Ψ(𝑥, 𝑡) = 𝐴𝑒𝑖(𝑘𝑥−𝜔𝑡) 

To verify that this is a solution to the free-particle Schrodinger equation, we must ask 

−
ℏ2

2𝑚

∂2

∂𝑥2 (𝐴𝑒𝑖(𝑘𝑥−𝜔𝑡)) = 𝑖ℏ
∂

∂𝑡
(𝐴𝑒𝑖(𝑘𝑥−𝜔𝑡))? 

Taking partial derivatives on both sides, we have 

−
ℏ2

2𝑚
(𝑖𝑘)2𝐴𝑒𝑖(𝑘𝑥−𝜔𝑡) = 𝑖ℏ(−𝑖𝜔)𝐴𝑒𝑖(𝑘𝑥−𝜔𝑡) 

−𝑖2
ℏ2

2𝑚
𝑘2𝐴𝑒𝑖(𝑘𝑥−𝜔𝑡) = −𝑖2ℏ𝜔 𝐴𝑒𝑖(𝑘𝑥−𝜔𝑡) 

ℏ2

2𝑚
𝑘2𝐴𝑒𝑖(𝑘𝑥−𝜔𝑡) = ℏ𝜔 𝐴𝑒𝑖(𝑘𝑥−𝜔𝑡) 

ℏ2𝑘2

2𝑚
 = ℏ𝜔 

Therefore, as long as 𝑘 and 𝜔 have the relation above, the plane wave solution holds for all possible 

values of 𝑥 and 𝑡. Recognizing that this equation contains ℏ, 𝜔, and 𝑘, we can insert the fundamental 

wave-particle relationships  

(ℏ𝑘)2

2𝑚
 = ℏ𝜔 

𝑝2

2𝑚
 = 𝐸 

since 𝑝2/2𝑚 is just another way to write kinetic energy, the equation above tells us that the particle’s 

energy is equal (only) to its kinetic energy. Thus, we say that the Schrödinger equation is related to 

a classical accounting of energy. 

 

4.4 Uncertainty Principle 

It is impossible to precisely know both the momentum and position of a particle along the x-axis. 

The product of the momentum uncertainty and position uncertainty has a strict lower limit: 

momentum-position 
uncertainty Δ𝑝𝑥Δ𝑥 ≥

ħ

2
  



4.7 Fourier Transform 

The plane wave solution is not a very good model of a real particle. A much better approximation is 

a wave pulse as shown below. We can build such a wave pulse from a sum of pure sine waves. 

𝜓(𝑥)  

 
The waves required to build this wave pulse have wave numbers 𝑘, where 𝑘 is not restricted to 

integral multiples of some fundamental frequency 𝑘0. In other words, we need to sum over a 

continuum of wave numbers 

𝜓(𝑥) = ∫  
+∞

−∞

𝐴(𝑘)𝑒𝑖𝑘𝑥𝑑𝑘 

 

But we are interested in 𝐴(𝑘) because it tells us how much of each wave number goes into the sum 

𝐴(𝑘) =
1

2𝜋
∫  

+∞

−∞

𝜓(𝑥)𝑒−𝑖𝑘𝑥𝑑𝑥 

 

Gaussian Wave packet 

A good approximation for a resonably well-localized particle is the Gaussian wave packet: 

 

 

 

𝜓(𝑥) = 𝐶𝑒−(𝑥/2𝜀)2
𝑒𝑖𝑘0𝑥 

 

 

where 𝐶 – determines the height 
 𝜀 – determines the “spread” 

 


