
Laplace Transform Examples

1 Basic Laplace transforms

Example 1.1: Find the Laplace transform of the signal

x(t) = e−tu(t)

Solution: From the table of common Laplace transform pairs, we know that the Laplace transform of a
signal of this form is

e−atu(t)←→ 1

s+ a

In this case, a = −1, therefore

X(s) =
1

s+ 1

Alternatively, we could think of the x(t) as u(t) with a frequency shift applied due to the multiplication by
an exponential term e−t. In that case, you would determine first that the Laplace transform of u(t) is 1/s,
and then apply the frequency shift property (shift amount being −(−1) = +1), replacing every s with s+1.

Example 1.2: Find the Laplace transform of the signal

x(t) = 6e−3tu(t)

Solution: From the previous example, we know that the exponential and unit-step part will give us

1

s+ 3

and by the linearity of the laplace transform, any constant in front of a signal comes along for the ride. Thus

X(s) =
6

s+ 3
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Example 1.3: Find the Laplace transform of the signal

x(t) = u(t)− u(t− 1)

Solution: As expected, the first term has Laplace transform 1/s, but the second term is delayed in time so
we must apply the time-shifting property. A shift in time corresponds to multiplication by an exponential
in the s-domain

x(t− a)u(t− a)←→ e−asX(s)

In this case, the shift amount a is 1, so

X(s) = L[u(t)− u(t− 1)]

= L[u(t)]− L[u(t− 1)]

=
1

s
− 1

s
e−(1)s

=
1− e−s

s

Example 1.4: Find the Laplace transform of the signal

x(t) = u(t+ 1)− u(t)

Solution: Again, we can apply the time-shifting property, this time with a = −1

X(s) = L[u(t+ 1)− u(t)]

= L[u(t+ 1)]− L[u(t)]

=
1

s
e−(−1)s − 1

s

=
es − 1

s
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Example 1.5: Find the Laplace transform of the signal

x(t) = cos(ωt)u(t)

Solution: This Laplace transform can be found in most tables already, but we can easily compute it
ourselves through a combination of basic properties. First, recall that cosine has the complex definition

cos θ =
1

2
(ejθ + e−jθ)

Letting θ be ωt in the equation above, can rewrite signal x(t) as

x(t) =
1

2

(
ejωt + e−jωt

)
u(t)

=
1

2

[
ejωtu(t) + e−jωtu(t)

]
Since j and ω are both constants, we can treat them as a single constant a = jω, leaving us with

x(t) =
1

2

[
eatu(t) + e−atu(t)

]
This now looks very similar to previous examples. The constant 1

2 stays out front and we apply the Laplace
transform to each term individually

X(s) =
1

2
L
[
eatu(t) + e−atu(t)

]
=

1

2

[
1

s− a
+

1

s+ a

]
=

1

2

[
s+ a

(s− a)(s+ a)
+

(s− a)

(s+ a)(s− a)

]
=

1

2

[
s+ a+ s− a

(s− a)(s+ a)

]
=

1

2

[
2s

s2 − a2

]
=

s

s2 − a2

Finally, replacing the a with jω, we have

X(s) =
s

s2 − (jω)2

X(s) =
s

s2 + ω2

This is another handy result, and since we did not use any numbers, it is already in its most general form

cos(ωt)u(t)←→ s

s2 + ω2
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Example 1.6: Find the Laplace transform of the signal

x(t) = e−10t cos(4t)u(t)

Solution: First, we note that the negative exponential part is a frequency shift, so we ignore it for now,
leaving us with the familar signal

cos(4t)u(t)

which has Laplace transform

s

s2 + 42

Then, we apply the frequency shift property with shift amount −(−10) = 10

(s+ 10)

(s+ 10)2 + 42
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2 Simple circuits

The Laplace transform can be used to solve first-order differential equations such as those that arise from
the analysis of RC and RL circuits. Finding solutions to differential equations becomes a matter of simple
algebraic manipulation in the s-domain and identification of the right inverse Laplace transform to get back
to the time-domain.

Example 2.1: Find the impulse response of the RL circuit below. We consider the current i(t) as the
output and voltage source vs(t) as the input of the system in this case. Assume zero initial conditions.

Solution: We want to find the equation for output i(t). Start by applying KVL

vs(t) = Ri(t) + L
di(t)

dt

Then, since we are looking for the impulse response, we set the input vs(t) to the unit impulse function δ(t)

δ(t) = Ri(t) + L
di(t)

dt

Now, we take the Laplace transform of the entire equation and solve for the current

L[δ(t) = Ri(t) + L
di(t)

dt
]

1 = RI(s) + L[sI(s)− i(0)]

Since the initial conditions are 0, the i(0) term goes away

1 = RI(s) + sLI(s)

1 = I(s)[R+ sL]

I(s) =
1

R+ sL

At this point, we have a familiar-looking result. Dividing the top and bottom by L, we find

I(s) =
1
L

s+ R
L

I(s) =
1

L

1

s+ R
L

i(t) =
1

L
e−

R
L tu(t)
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3 Partial Fraction Expansion

Oftentimes, we must take the inverse Laplace transform of a signal or transfer function that happens to be
ratio of polynomials. In such cases, there are no pre-determined results in a table to help us, so we must
apply partial fraction expansion to find the solution.

Example 3.1: Find the causal inverse Laplace transform of

X(s) =
3s+ 5

s2 + 3s+ 2

Solution: Factor the denominator and use partial fraction expansion

3s+ 5

(s+ 1)(s+ 2)
=

A

s+ 1
+

B

s+ 2

3s+ 5 = A(s+ 2) +B(s+ 1)

3s+ 5 = As+ 2A+Bs+B

3s+ 5 = (A+B)s+ (2A+B)

The coefficients of sn on the lefthand side must be equal to those on the righthand side, that is

s2 : 0

s1 : (A+B) = 3

s0 : (2A+B) = 5

Solving for A and B, we find

A = 2

B = 1

Therefore, the partial fraction expansion becomes

X(s) =
2

s+ 1
+

1

s+ 2

Finally, we take the inverse Laplace transform

x(t) = L−1

[
2

s+ 1
+

1

s+ 2

]
=

[
2e−t + e−2t

]
u(t)
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