Laplace Transform Examples

1 Basic Laplace transforms

Example 1.1: Find the Laplace transform of the signal

Solution: From the table of common Laplace transform pairs, we know that the Laplace transform of a
signal of this form is

1
s+a

e u(t) «+—

In this case, a = —1, therefore

1
s+1

X(s) =

Alternatively, we could think of the z(t) as u(t) with a frequency shift applied due to the multiplication by
an exponential term e~‘. In that case, you would determine first that the Laplace transform of u(t) is 1/s,
and then apply the frequency shift property (shift amount being —(—1) = +1), replacing every s with s+ 1.

Example 1.2: Find the Laplace transform of the signal

x(t) = 6e3tu(t)

Solution: From the previous example, we know that the exponential and unit-step part will give us

1
s+ 3

and by the linearity of the laplace transform, any constant in front of a signal comes along for the ride. Thus




Example 1.3: Find the Laplace transform of the signal

z(t) =u(t) —u(t—1)
Solution: As expected, the first term has Laplace transform 1/s, but the second term is delayed in time so
we must apply the time-shifting property. A shift in time corresponds to multiplication by an exponential

in the s-domain
z(t —a)u(t —a) +— e"* X (s)

In this case, the shift amount a is 1, so

Example 1.4: Find the Laplace transform of the signal

z(t) =u(t +1) — u(t)

Solution: Again, we can apply the time-shifting property, this time with a = —1

X(s) = Llu(t + 1) = u(?)]
= Llu(t +1)] — Lu(t)]
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Example 1.5: Find the Laplace transform of the signal

x(t) = cos(wt)u(t)

Solution: This Laplace transform can be found in most tables already, but we can easily compute it
ourselves through a combination of basic properties. First, recall that cosine has the complex definition

1 . _
cosf = 5((2]6 +e799)
Letting 6 be wt in the equation above, can rewrite signal x(¢) as

z(t) =

= - Tty (t) + eij“’tu(t)]

(ejwt T e—jwt) u(t)
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Since j and w are both constants, we can treat them as a single constant a = jw, leaving us with
1 at —at
z(t) = 3 [e™u(t) + e “tu(t)]

This now looks very similar to previous examples. The constant % stays out front and we apply the Laplace
transform to each term individually

1
X(s) = 5/.1 [e™u(t) + e “tu(t)]
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Finally, replacing the a with jw, we have
s
X(s)= —
S
s
X(s) = — >
() = s

This is another handy result, and since we did not use any numbers, it is already in its most general form
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Example 1.6: Find the Laplace transform of the signal
z(t) = e 1% cos(4t)u(t)
Solution: First, we note that the negative exponential part is a frequency shift, so we ignore it for now,
leaving us with the familar signal
cos(4t)u(t)

which has Laplace transform

S
82+42

Then, we apply the frequency shift property with shift amount —(—10) = 10

(s +10)
(s +10)2 + 42




2 Simple circuits

The Laplace transform can be used to solve first-order differential equations such as those that arise from
the analysis of RC and RL circuits. Finding solutions to differential equations becomes a matter of simple
algebraic manipulation in the s-domain and identification of the right inverse Laplace transform to get back

to the time-domain.

Example 2.1: Find the impulse response of the RL circuit below. We consider the current i(¢) as the
output and voltage source vs(t) as the input of the system in this case. Assume zero initial conditions.
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Solution: We want to find the equation for output i(¢). Start by applying KVL

di(t)
dt

vs(t) = Ri(t) + L

Then, since we are looking for the impulse response, we set the input v, (t) to the unit impulse function 6(¢)

di(t)
dt

5(t) = Ri(t) + L

Now, we take the Laplace transform of the entire equation and solve for the current

i)
L) = Ri()+L%2]

1 = RI(s)+L[sI(s) —i(0)]

Since the initial conditions are 0, the ¢(0) term goes away

1 = RI(s)+sLI(s)
1 = I(s)[R+sL]
I(s) = 7 j I

At this point, we have a familiar-looking result. Dividing the top and bottom by L, we find

1
I(s) = —L
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3 Partial Fraction Expansion

Oftentimes, we must take the inverse Laplace transform of a signal or transfer function that happens to be
ratio of polynomials. In such cases, there are no pre-determined results in a table to help us, so we must
apply partial fraction expansion to find the solution.

Example 3.1: Find the causal inverse Laplace transform of

35+5

X)) = ————
(5) s2+3s+2

Solution: Factor the denominator and use partial fraction expansion

35+5 A B
(s+1)(s+2) - $+1+s—|—2
3s+5 = A(s+2)+B(s+1)
35s+5 = As+2A+Bs+ B
35+5 = (A+B)s+(2A+ B)

The coeflicients of s™ on the lefthand side must be equal to those on the righthand side, that is

s2 10
st : (A+B)=3
s © (244 B)=5

Solving for A and B, we find

Finally, we take the inverse Laplace transform

2 L 1
s+1 s+2

x(t)=L" [ } = [2e7" + e ] u(t)




